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ABSTRACT

In interactive visual machine learning (IVML) processes, human-
computer interaction provides a crucial means for model-developers
to inject their knowledge, especially the knowledge that is not en-
coded in the training data, into the learning processes. In this paper,
we discuss how the cost of interactions can be measured or estimated
and how such measurements can be used in evaluating IVML pro-
cesses. In particular, we present a practical solution for estimating
the cost of interactions and demonstrate the use of such estimated
measures in comparing different designs of an active learning system
for reconstructing data from historical visualization.

Index Terms: Human-centered computing—Visualization—
Visualization design and evaluation methods

1 INTRODUCTION

Interactive Visual Machine Learning (IVML) is a class of the practi-
cally viable machine learning (ML) methods, with which the human
model-developers can use visualization to observe various aspects of
the learning process, the training data and the evolving model; and
can use interactions to steer the learning process. In recent years,
a good number of authors have reported their positive experience
of adopting the IVML approach in developing analytical models
(e.g., [1, 5, 8, 11, 12, 14]).

There are many metrics for evaluating ML models and fully au-
tomated ML processes [10]. All these can be applied to models
learned using IVML methods and IVML processes. Tam et al. used
an information-theoretic metric to estimate the human knowledge
available to an IVML process through interactions, and demonstrated
that an IVML process can benefit significantly from human knowl-
edge, especially when a sparse or skewed dataset is used in model
training [15]. While their work was based on the cost-benefit metric
proposed by Chen and Golan [4], they did not measure or estimate
the cost of interactions, which would provide a more balanced eval-
uation of the two IVML processes in [15]. In general, it is necessary
to assess both the benefit and the cost of interactive visualization
activities. In this short paper, we focus on measuring and estimating
the cost of interactive activities.

In recent years, many IVML solutions have emerged in the lit-
erature. User interfaces with sophisticated interaction designs and
visual representations have been used to support ML methods such
as neural networks [12], decision trees and random forests [11, 14],
topic modeling [5], and clustering [9]. The evaluation metrics
shown in these works include conventional ML performance met-
rics [5,12,14], and user feedback and testimonies [5,9,11]. However,
to our best knowledge, there has not been any effort for measuring
the cost of interactions in IVML.

2 MEASURING THE COST OF INTERACTIONS

In this paper, we define an interaction unit as a set of actions in
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relation to a human input action for entering a piece of information.
This unit may include the actions of a computer to display some
information as a prompt for interaction, and the actions of a user
to use an input device to enter some information. Here a sequence
of inseparable actions (e.g., moving scroll bar or dragging-and-
dropping an object) is considered as a single interaction unit, while
some semantically-related actions (e.g., selecting a radio-button
option, and then pressing a [yes] button) are considered as separate
interaction units.

2.1 Metrics, Direct Measurement, and Challenges
Card et al. proposed to model interaction tasks based on four
physical-motor operators (keystroking, pointing, homing and draw-
ing) and one mental operator [2]. The idea was further explored by
many researchers, e.g., [3] [6] [7]. In general, the cost of interactions
can be affected by many factors, including:

• the number of interaction units (or interactions for short);
• the time used for interactions;
• the difficulty level of interactions;
• the cognitive load of interaction (e.g., measured using elec-

troencephalography);
• the cost related to the input modality (e.g., mouse, keyboard,

gesture, voice, etc.);
• the cost of learning to perform an interaction;
• the adverse cost of an input error.

It is also necessary to consider the impact of interactions on the
overall IVML processes and the learned models. In addition to many
conventional metrics (e.g., accuracy, precision, recall, F1-score, etc.)
for fully automated ML processes and the learned models, one may
consider the following aspects of impact in comparison with a fully
automated ML process:

• Do interactions reduce or increase the biases of the learned
models?

• Do interactions reduce or increase the amount of data required
for an ML process, and/or the cost of data labelling?

• Do interactions reduce or increase the convergence rate of the
evolving model?

• Do interactions reduce or increase the overall time of a model-
development project (from the initial problem specification to
the delivery of a working model)?

• Do interactions reduce or increase the overall cost of a model-
development project (e.g., human costs for data collection,
labelling, model template design, and iterative design refine-
ment, etc.)?

• Do interactions reduce or increase the human users’ confidence
or trust in the learned model or the associated learning process?

Ideally, one would wish that many of such measurements can be
obtained from various forms of empirical studies, or good record-
keeping for longer-term measurements (e.g., human effort and costs)
in model-development projects. However, there are a number of
challenges in these ways of conducting evaluation:



(a) Since one of the main purposes of interaction in IVML is
to allow trainers to inject their knowledge into the learning
process, replacing them with inexperienced participants in a
controlled experiment may make the benefit of knowledge
difficult to assess.

(b) Many ML processes are sensitive to the ordering of training
data. Interactions may change such ordering, while the effect
of interactions may also depend on the ordering. In tradi-
tional empirical studies, one typically uses a combination of
randomization and repeated measures to alleviate an ordering
confounding effect. This approach would require an IVML
session to be very short in order to take repeated measures, and
would restrict the design space of such studies significantly as
most IVML sessions are more complex than typical trials in
empirical studies.

(c) A project for developing a working ML model in a practical ap-
plication typically takes many months from the initial problem
specification to model delivery. For such a project to embrace
both automated ML and IVML workflows is already a non-
trivial demand. Any effort for good record-keeping about the
time, cost, and impact during the project period will add further
burden and complexity to the management of the project.

(d) One may consider obtaining some qualitative or subjective
measures by, for instance, conducting surveys and small group
discussions. While these are no doubt useful means of evalua-
tion in general, the opinions gathered can be easily influenced
by the characteristics of the data, ML method used, tasks of
the model, the knowledge and experience of the trainers and
so on.

(e) The records of model-development projects and the results
of less-tightly controlled empirical studies (e.g., qualitative
studies) can be difficult to reproduce, and this may hinder
meaningful comparison with future work;

2.2 Simulation-based Estimation
One alternative to direct measurement using empirical studies and
record-keeping is to simulate the interactions that may be used in
IVML sessions, and compile statistical measures from the simula-
tion results. Simulation of the cost of interaction is essentially a
computable function F : I×O, where I is one or a set of input vari-
ables and O is one or a set of output variables. The input variables
define the independent variations of the operational environment
used for comparing different IVML sessions, including for instance,
different designs of the user interfaces and/or visual representations
for supporting IVML, different types of information available to
the trainers during the IVML sessions, different techniques used
for initiating interactions or for reducing the need for interactions,
and so forth. The output variables define the estimated measures
about the IVML sessions that vary depending on the input variables.
The output variables may be selected from those cost measures men-
tioned in Section 2.1 as well as various conventional measures of
ML processes (e.g., accuracy, precision, recall, F1-score, etc.).

For example, one may define I for a supervised ML method as a
simple three-value nominal variable:

Method: M = {Manual,ActiveLearning,AutomatedML}

which represents three settings: (i) fully manual labelling 100% data
objects without ML; (ii) active learning with dynamic labelling of
20% data objects during ML and applying the learned model to
the rest 80% data objects; and (iii) fully automated ML with pre-
labelling of 20% data objects and applying the learned model to the
rest 80% data objects. Meanwhile, the output O can be as simple as
two basic variables:

Accuracy: Acc ∈ [0,1], Number of Interactions: #Int ∈ N.

With some further assumptions such as the number of interactions
for labelling each data object, it is feasible to write a program to
compute the function F in the three scenarios, allowing a quantitative
comparison of (Acci,#Inti), i = 1,2,3.

It is not difficult to see that the function F can involve more input
and output variables, and can simulate many different settings of
IVML sessions.

With such a programmable function, one can address a num-
ber of aforementioned challenges in direct measurements through
empirical studies and record-keeping. For example:

• Simulation takes much less time to run in comparison with an
empirical study and keeping records over a project period.

• Simulation can cover scenarios involving a large number of in-
teractions or longer interaction time that would not be feasible
to measure in an empirical study that typically lasts between
30-60 minutes.

• Simulation can cover many settings of IVML sessions that
cannot all be implemented in a typical model-development
project.

• Simulation can collect measures using repeated measures by,
e.g., running differently-ordered sequences of training data,
alleviating the confounding effect due to the sampling order.

3 A CASE STUDY

In this section, we describe our experience of using simulation to
estimate the cost of interactions and to compare different IVML
methods with fully manual labelling and fully automated ML.

(x=51.513, y=-0.137, #victims=18)

Figure 1: John Snow’s Cholera Map [13] contains 321 data points.
Each data point is a tuple (x,y,#victims), representing the latitude and
longitude of a location, and the number of victims at this location.

3.1 Data Reconstruction from Historical Visualizations
This case study is concerned with the development of a software
system for reconstructing data from historical visualization images.
For example, a user may wish to reconstruct the data from John
Snow’s Cholera Map [13] as shown in Figure 1 by identifying and
measuring all data points (x,y,#victims). One may consider the
following four types of systems for supporting the user:

1. No software system support — The user visually identifies all
data points and uses the “pen and ruler” approach to measure
each (x,y,#victims).



2. An interactive system — The user would visually identify all
data points and use the system interactively to click each point
(x,y), and enter its data value #victims.

3. An IVML system — A system adopts an active learning ap-
proach, has some built-in image processing utilities, and at-
tempts to learn dynamically to identify all data points and
measure (x,y,#victims). It initiates interactions with the user
to seek help, such as labelling imagery components.

4. A conventional ML-based system — The user pre-labels a
set of training data related to a historical visualization image,
and then uses a supervised ML method to train an ML model,
which is then incorporated into a generic software system
for identifying and measuring all data points in the historical
visualization image concerned.

We consider that Approach 1 of measuring all 321 data points
manually could be rather time-consuming and laborious, while Ap-
proach 4 of conventional ML would not be feasible because the
training dataset might require more than 321 data objects in order
for the ML model to reach a high-level accuracy. We have thus
developed an IVML system for supporting data reconstruction.

3.2 Techniques for Reducing Interaction Cost
In IVML, interactions bring about benefit while incurring cost.
Hence we have considered a range of techniques for making in-
teractions more cost-effective. This raises the question about how
to evaluate and compare different technical solutions. As discussed
in Section 2.1, using empirical studies and record-keeping for this
purpose would encounter many challenges. We thus adopt the simu-
lation approach, with which we can estimate the cost of interactions
routinely whenever a new technical solution arose during the project
development.

We adapted the strategy of demanding only simple input actions
from the user (such as point and click), and avoiding complex ac-
tions (such as drawing a boundary). This allowed us to focus on the
“number of interaction units” as the core metric in our simulation.
Our IVML system has many technical components, and throughout
the project, we considered several design options for each compo-
nent. Hence the combination of different design options for different
components resulted in a range of technical solutions for the whole
system. We list below some major variations of these solutions that
were evaluated and compared through simulation:

• BF — This is used to estimate the cost of interactions in
the aforementioned Approaches 1 and 2 (i.e., without ML
or IVML).

• ML + x%-PL — The Approach 4 (conventional ML) with x%
of data objects pre-labelled before the learning session.

• IVML + RS — An IVML solution with active learning and
random sampling (RS) of data objects for labelling.

• IVML + AS — An IVML solution with active learning and
algorithmic sampling (AS) of data objects for labelling. Algo-
rithmic sampling is a technique for selecting more informative
data objects to be presented to the user for labelling.

• IVML + RS + AD + k-DL — An IVML solution that adds an
algorithmic default labelling (AD) technique to the IVML +
RS. The AD technique uses an algorithm (e.g., label propaga-
tion or an interim learned model) to guess the possible labels
of some unlabelled data objects. With the AD technique, a user
interface for active learning can provide the user with default
labels (DF) of the presented data objects. If all default labels
are correct, the user only needs to confirm all labels with one
confirmation interaction. If some default labels are incorrect,
the user needs to correct the mistakes before the confirmation.
So the number of interactions depends on the error rate of the
AD technique as well as the number k of default labels in each
iteration of active learning.

• IVML + AS + AD + k-DL — Similar to the above, except
that algorithmic sampling is used in place of random sampling.

• IVML + RS + RD + k-DL — An IVML solution that adds a
random default labelling (RD) method to the IVML + RS. By
assigning a default label randomly to each data object to be
presented to the user, this provides a reference benchmark for
evaluating the algorithmic default labelling technique.

• IVML + AS + RD + k-DL — Similar to the above, except
that algorithmic sampling is used in place of random sampling.

It is easily observed that many more alternative solutions can be
simulated, e.g., with different x% for pre-labelling, and different k
for default labels. During our development, we implemented several
versions for various components, such as algorithmic sampling and
label propagation. We collected their performance measures (e.g.,
error rate), and fed them into the simulation software. Furthermore,
our IVML system consists of a number of different pipelines, e.g.,
for detecting blocks, multi-block bars, root positions, lines, curves,
polylines, boundaries, etc. Hence the actual number of variations
being simulated is much higher. The simulation-based evaluation
has been an indispensable method in our development project.

Because the focus of this paper is on evaluation and the page limit
of a short paper, it is not possible to describe the details of various
technical solutions mentioned here. These have been reported in a
separate technique paper [16].

3.3 Cost Estimation and Repeated Measures
Let us first consider the example of block recognition in relation to
John Snow’s Cholera Map [13]. Figure 2 shows a set of simulation
results for comparing six different technical solutions in implement-
ing one of the pipelines, i.e., for recognizing all blocks (i.e., the
components of stacked bars) in John Snow’s Cholera Map. The
six solutions are (i) BF, (ii) ML + 20%-PL + NeD + 6-DL, (iii)
IVML + RS + RD + 6-DL, (iv) IVML + AS + RD + 6-DL, (v)
IVML + RS + AD + 6-DL, and (vi) IVML + AS + AD + 6-DL.
The simulation results here are for comparing a specific setting in-
volving a user interface showing six data objects each time for the
user to label, a specific algorithm (referred to as ES) for algorithmic
sampling, and another specific algorithm (referred to as Interim) for
algorithmic default labelling. The tags IVML and 6-DL are omitted
in the legend of the plot.

The block recognition pipeline first detects all potential candidates
of blocks and then attempts to classify them into blocks and non-
blocks. It may terminate the active learning process after a number
of iterations, applies the learned model to all unlabelled candidates,
and ask the user to confirm the correct answers. Visually, humans
are able to recognize 579 rectangular blocks in John Snow’s Cholera
Map. The approach BF would require a minimal of 579 interactions
to achieve 100% accuracy.

However, the image processing step of the pipeline cannot rec-
ognize the 579 blocks reliably due to the quality of the hand-drawn
visualization. In order to ensure that the candidate set contained
as many true positives as possible, the image processing step was
tuned towards a lower threshold, yielding 4416 candidates in total.
Even with such a low threshold, 46 blocks were not among the 4416
candidates. Hence, there was a minimal overhead of 46 interactions
for quality assurance if one demands 100% accuracy.

For a conventional ML process with pre-labelling 20% candidates
(i.e., ML + 20%-PL) would require 883 pre-labelling interactions
using a basic UI that labels objects one each time. However, with
the anticipation of more false positives than true positives, one can
design a UI that allows a user to label k data objects in one go. These
data objects can all be labelled “non-block” by default (i.e., labelled
as NeD (Negative Defaults) in Figure 2). Hence about 12% of the
default labels need correction. If the UI is designed to label six data
objects each time, 883 data objects would need 108 interactions



Figure 2: Comparing six technical solutions for detecting blocks in
John Snow’s Cholera Map. The x-axis indicates the number of inter-
actions have been performed after each iteration of active learning,
while the y-axis shows the total number of interactions that would be
required to achieve 100% accuracy in block recognition.

for correction and 148 interactions for confirmation. This does not
include the 46 interactions for correcting those false negative cases.

As the ML model learned from the 883 training data objects is
unlikely to achieve 100% accuracy, further interactions for quality
assurance will be necessary (in addition to the aforementioned 46
ones). Our testing of the learned model with 20% pre-labelling
(averaging 75 simulations) showed that the model achieved about
98.837% accuracy, with 0.702% false positives and 0.461% false
negatives. We estimate that 41 (≈ (0.702+0.461)%×(4416−883))
interactions would be required for correcting these false positives and
false negatives. The total number of interactions for pre-labelling
and quality assurance is thus 108+148+41+46 = 343.

With the four IVML solutions in Figure 2, the system dynamically
selects k data objects in each iteration using random or algorithmic
sampling, assigns their labels using random or algorithm default
labelling, and asks the user to correct any labelling errors. The
system then attempts to update the interim model using the k training
data objects. In our simulation, we can apply the interim model to the
unlabelled data objects, estimate the number of interactions required
for quality assurance should the interim model were to be deployed.
In Figure 2, the x-axis indicates the number of interactions performed
after each iteration of active learning, while the y-axis shows the
total number of interactions that have already been performed for
dynamic labelling and for quality assurance in order to achieve 100%
accuracy of block recognition.

Since we have implemented these four IVML solutions, we have
called the real implementations to obtain the performance measures
of each interim model. Because each iteration may add 1-7 interac-
tions, and the labels may occasionally weaken the performance of
the interim model, we can observe the step patterns in Figure 2. After
some iterations in active learning, further interactions for dynamic
labelling may not improve the learned model significantly. We can
observe that the total number of interactions increases because the
number of interactions required for quality assurance remains more
or less unchanged while those for dynamic labelling continue to
increase.

With the simulation approach, one is able to consider a variety of
independent variables that could affect the cost of interaction as well
as the quality of the learned models. However, the more independent
variables are involved, the more complex it will be to interpret the
simulation results. For example, one may wish to simulate the
potential labelling errors in all four approaches mentioned in 3.1.

Figure 3: Using 75 repeated measures, the simulation results are
much less cluttered than Figure 2.

The learned model can be sensitive to which data objects are labelled
incorrectly. With the random sampling (RS) technique mentioned
in Section 3.2, a specific sampling sequence may lead to a learned
model that may be more or less accurate as many ML methods are
sensitive to the ordering of the training data. The up and down
patterns in Figure 2 are caused by such sensitivity.

To alleviate the issues of such sensitivity, which are similar to
confounding effects in empirical studies, we can use “repeated mea-
sures” that are commonly used in empirical studies for alleviating
confounding effects. Figure 3 shows a less cluttered plot, where
each of the four IVML curves is the average of 75 repeated mea-
sures. Note that in empirical studies, one typically uses 3-5 repeated
measures (i.e., 3-5 stimulus for representing the same condition).
Most studies cannot afford the time for many repeated measures. In
this respect, there is an overwhelming advantage to use simulation.

4 CONCLUSION

In this short paper, we have articulated the need for measuring
the cost of interactions for evaluating IVML solutions, and have
reasoned about the merits of using simulation to derive different
measures of such cost. We have shown a case study where the
number of interactions was used as a metric for evaluating and
comparing different IVML solutions, and have discussed the need for
repeated measures in order to produce more informative simulation
results. The research on measuring the benefit [15] and the cost of
interactions in the context of IVML is still in an early stage. We
hope to carry out more case studies in the future.

Our simulation currently can estimate only the cost of simple
interaction, and more sophisticated simulation model (e.g., based on
[2] and [7]) can be introduced in the future to address any potential
need for complicated interactions in IVML processes.

While using simulation to estimate the cost of interaction has
many merits as discussed in Section 2.2, it is not a replacement of
human-centered empirical studies. For example, empirical studies
can provide a complex simulation model with some parameters (e.g.,
the difference between interaction modalities and between different
user interface layouts). In comparison with simulation, empirical
studies remain to be more effective for evaluating the usability of a
user interface and the effectiveness of visual representations used for
IVML. Hence, simulation and empirical studies are complementary.
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